Molekuláris képalkotás

Funkcionális képalkotó eljárások, multimodális módszerek

Máthé Domokos PhD

Nanobiotechnology and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ

Molekuláris képalkotás-molecular imaging

- "A képalkotás az időben és térben meghatározott információ kinyerésének tudománya minden fizikai szerveződési szinten " (Dr. Elias Zerhouni, a NIH volt igazgatója)
- "A molekuláris képalkotás a biológiai folyamatok molekuláris és sejtszintű láthatóvá tétele, jellemzése és mérése az élő rendszerekben"

(Society for Nuclear Medicine and Molecular Imaging-Amerikai Nukleáris Medicina Társaság)

(Molekuláris biológia --> Molekuláris képalkotás)

Nanobiotechnológiai és In Vivo Képalkotó Központ

Szerkezet

- Molekuláris képalkotás miért ez a neve?
- Mi mindent alkalmazhatunk molekuláris képalkotásra? (jelentősebb módszerek példákkal)
- A molekuláris képalkotás módszerei (áttekintés)
- A molekuláris képalkotás alkalmazási lehetőségei a klinikumban (szűrés, diagnosztika, személyre szabott kezelés, nyomon követés)
- A legjelentősebb molekuláris képalkotási módszerek a klinikumban ma, kitekintés a holnapra

PET, SPECT, MRI, Planáris fluoreszcencia, Optikai tomográfiák)

- Onkológia, idegtudomány, kardiovaszkuláris medicina, reumatológia, endokrinológia, sebészet
- Multimodális képalkotási módszerek lehetőségei (multimodális és multiplex rendszerek)
- Funkcionális és morfológiai információ korrelációja
- Kép-szegmentáció és regisztráció klinikai haszna

Nanobiotechnology and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ

Mi mindent alkalmazhatunk molekuláris képalkotásra?

1. A kezdetek (és a velünk élő klasszikus): hisztokémiai reakciók

Gömöri-festés a vese tubulussejtek alkalikus foszfatáz enzimtartalmának kimutatására

2. Immunhisztokémia és -fluoreszcencia: mikroszkópia

Immunhisztokémia: szomatosztatin 2a receptor elleni antitest reakció insulinoma máj-áttétben (300x, H&E háttérfestés)

A431 sejtvonalból (epithelialis cc.) származó tumorsejtek, a magok Hoechst-festéssel kékre, a sejtmembrán foszforilált EGFreceptorai az **antitesthez kötött**, 488 nm-en emittáló DyLight festéssel **zöldre** festődnek

Semmelweis NIVIC Nanobiotechnology and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ

Nagyfelbontású módszerek - élő sejteken is: AFM/TIRF

Kellermayer et al. Biophys J. 2006

Nanobiotechnology and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ

Molekuláris képalkotó "szondák" vagy "kontrasztanyagok" általános szerkezete

Modalitás	Előnyei	Hátrányai	Fontos kontrasztanyag/jel	Klinikai alkalmazás példái
СТ	Bármilyen mélységű kép Jó térbeli felbontás Egésztest-képalkotás Perces kép-idők Közepesen drága Anatómiai módszer	Sugárterhelés Rossz lágyszöveti kontraszt Jelenleg csak anatómiai és funkcionális képalk.	Ba, I, Kr, Xe	Tumor perfúzió,
PET	Bármilyen mélységű kép Egésztest-képalkotás Kvantitatív mérések Kombinálható CT/MRI-vel	Sugárterhelés Drága Milliméteres felbontás Hosszabb képidő (perc-óra)	C-11, F-18, Ga-68, Cu-64, Zr-89	FDG-PET tumor staging, különböző betegségek diagnosztikája
SPECT	Bármilyen mélységű kép Egésztest-képalkotás Kvantitatív mérések Multiplex Teragnosztika Kombinálható CT-vel	Sugárterhelés Szubmilliméteres-milliméteres felbontás Hosszabb képidők	Tc-99m, I-123, In-111, Lu- 177	Molekuláris diagnosztika Radioterápia (NHL, NET, pm. cc.)
MRI	Bármilyen mélységű kép Egésztest-képalkotás Nincs ionizáló sugárzás Kitűnő lágyszöveti kontraszt	Drága Hosszú képidők Korlátozott érzékenység	Gd ³⁺ , vas-oxid részecskék (SPIO, USPIO)	Prosztata daganat nycs. met. Fokális májléziók Szív perfúzió
MRS	Nincs ionizáló sugárzása Egésztest-képalkotás	Drága Hosszú képidők Kis érzékenység	Kolin, laktát, kreatin, lipidek, N-acetil-aszpartát	Agytumorok anyagcseréje Alzheimer-kór követése
UH	Nincs ionizáló sugárzás Rövid/valósidejű képalkotás Nagy térbeli felbontás Olcsóság Nagy érzékenység	Egésztest-képalkotás nincs Kontrasztanyagok csak az érrendszerre Operátor-függő	Mikro-buborékok	Fokális májléziók, echokardiográfia, Tumor perfúzió
Optikai módszerek	Nincs ionizáló sugárzás Rövid/valósidejű képalkotás Nagy térbeli felbontás Olcsóság Nagy érzékenység, kvantitatív Multiplex	Korlátozott áthatolóképesség (1 cm) Nincs egésztest-képalkotás	Fluoreszcens molekulák és festékek, fény-elnyelő nanorészecskék	OCT-érelmeszesedés, retinopathiák, kolonoszkópia

UH

Előnyei

Hátrányai

Klinikai alkalmazás Voxel méretek

Kontrasztanyag

Sejt szám/voxel

Nagy (Multip	érzékenység, kvantitatív olex	
	Nanobiotechnol	ógiai és In Vivo Képalkotó Központ
UH	Hanghullám visszaverődési/terjed ési különbségek 3D	ApoE/K.O. egér aorta képei B-mód-a) Doppler-b) VCAM-1-c) Kontroll-d)
ei	Nincs ionizáló sugárzás Gyors/Valósidejű kép Nagy érzékenység Nagy felbontás Olcsóság ()	
yai	Nincs egésztest-képalkotás Nem kvantitatív, operátor- függő Csak érrendszeri kontrasztanyagok	
sztanyag	Célzott mikro-buborékok	
azás	Ritka, prosztata-rák vérkeringés Fázis III-ban (BR55, VEGFR2-kötő)	to- be uncoated RAD kg RoD VEGFR2
néretek m/voxe	<1x1x1 mm (<1 µL) 10 ⁶	e) - h): Tumor angiogenesis egérben
NIV		ceizott buborekokkai vizsgálva

elnyelési kép 3D Bármilyen mélységű kép Jó térbeli felbontás Egésztest-képalkotás Előnyei Perces kép-idők Közepesen drága Anatómiai módszer Sugárterhelés Rossz lágyszöveti kontraszt Hátrányai Jelenleg csak anatómiai és funkcionális képalkotás Kontrasztanyag Ba, I, Kr, Xe, Au - "belső": Ca Anatómiai referencia, Right Breast Klinikai perfúzió, ventilláció, kardiológia (Caalkalmazás score), mammográfia <1x1x1 mm (<1 µL) Voxel méretek Sejt szám/voxel 10⁶ O'Connell A et al. AJR 2010;195:496-509 O'Connell AM, Kawakyu-O'Connor D. J Clin Imaging Sci 2012;2:7

Röntgensugár

СТ

Nanobiotechnológiai és In Vivo Képalkotó Központ

Vanobiotechnology and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ

MRI	Proton spin 2D/3D	ApoE/K.O. egér aorta metszeti képei 9.4T, Bright-Blood Intragate FLASH szekvenciával	
Előnyei	Nincs ionizáló sugárzás Egésztest-képalkotás Kitűnő lágyszöveti kontraszt Nagy felbontás		
Hátrányai	Drága Nem érzékeny Esetenként hosszú képalkotási idők	2010	
Kontrasztanyag	-Szöveti protonok relaxációs idejét változtatják meg: Gd-alapú, CEST -Saját mágneses tulajdonságaikon alapuló: Fe, Mn-tartalmú		
Klinikai alkalmazás	Májléziók, nyirokcsomó-áttétek, perfúzió, myocard. infarct.	b) d) and a set of the	
Voxel méretek Sejt szám/voxel	<1x1x1 mm (<1 µL) 10 ¹³ (pl. 10 ⁷ Gd-atom/sejt)	Datkány diama kánai CEST alaný in	
		Falkany giloma keper CEST alapu in	

De Leon Rodriguez et al. Acc Chem Res 2009;49:948 Nanobiotechnology and I

Custodis E et al. J Vasc Res 2012;49:432

CEST alapú in vivo pH-mérő kontrasztanyaggal

Nanobiotechnology and In Vivo Imaging Center

	Nanobiotechnológia	és In Vivo Képalkotó Központ
SPECT	Gamma-sugárzás 3D	N N
Előnyei	Nincs fizikai felbontási határ Elterjedt, olcsó Érzékeny Transzlációs képalkotásra ideális Terápiás képalkotás	
Hátrányai	Korlátozott klinikai standardizálhatóság Korlátozott dinamikus képalkotás (műszer-probléma) Jel/zaj arány	
Kontrasztanyag	Tc-99m, I-123, I-125, In-111, Ho-166, Lu-177. Tl-201	
Klinikai alkalmazás	Nukleáris kardiológia, agyi perfúzió, onkológia (antitestek/peptidek), receptor terápia	I-123 iomazenil agyi Tc-99m-MIBI szlv perfúzió
Voxel méretek Sejt szám/voxe	Klinikum: 0.8x0.8x0.8 cm Kisállat: 0.3x0.3x0.3 mm ^{2x10⁹} (0.2 pM per voxel) sejtenként kb. 10 ⁻¹ izotóp atom	SPECT + angioneogenezis SPECT I-123-integrin liganddal
	0,02% érzékenység, 100 beütés, 5 perc scan, 0,2 attenuáció, max. spec. radioaktivitás esetén	
	elweis /IC Nanobiotechnology	and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ Optikai Látható ill. NIR fény kibocsátás/szóródás/áthatol ás/visszaverődés 2D. 3D Nincs ionizáló sugárzás Rövid/valósidejű képalkotás lase Előnyeik Olcsóság Nagy érzékenység Multiplex rotatin gantry Korlátozott áthatolóképesség Hátrányaik Nincs egésztest-képalkotás Változatos színű fluoreszcens Kontrasztanyag festékek, nano-rendszerek Sentinel nycs. keresés, retinopathiák Klinikai (OCT), endoscopia, emlőszűrés alkalmazás (LumaGem) 2D: 0.01 mm² Voxel méretek 3D: 0.8x0.8x0.8 cm Sejt szám/voxel10³ (2D), 10¹³ (3D): egyaránt sejtenként kb. 10⁴⁻⁵ festékmolekula LPS-inudkált tüdőgyulladás FMT/MRI képe egérben proteáz-Semmelweis aktivált festékkel vizsgálva Ntziachristos V. Proc Am Thorac Soc. 2009: 6, 416

Nanobiotechnology and I

Nanobiotechnológiai és In Vivo Képalkotó Központ 5 %ID/a 511 keV Gamma-sugárzás 3D PET Nagyon érzékeny Egésztest-képalkotás Biokémiai, kvantitatív képalkotás Klinikumban "jó" felbontás Előnyei Fiziológiás izotóp-jelölések Radioterápiás (proton) képalkotás, dózistervezés Nagyon drága (radiofarmakonok is) Fizikai felbontási határ (positron range) Sugárterhelés Hátrányai A: Hsp-90 inhibitor kezelés hatásának mérése egér xenograftban, a VEGF expressziótól függő Zr-89-bevacizumab PE képalkotással, B: Ki-67 IHC Kontrasztanyag C-11, F-18, Ga-68, Cu-64, Zr-89 Klinikai Onkológia (staging), KIR receptorrendszerek, alkalmazás Voxel méretek Klinikum: 0.5x0.5x0.5 cm Sejt szám/voxel Kisállat: 0.8x0.8x0.8 mm 0,1% érzékenység, 100 beütés, 5 perc scan, 0,1 attenuáció, max. 5x10⁸ (0.02 pM per voxel) sejtenként kb. 10⁻² izotóp atom Zr-89-trastuzumab PET képalkotással Semmelweis Zhang Y et al. meningeális és máj/csont áttétekben Curr Radiopharm 2011: 4, 131 Nanobiotechnology and In Vivo Imaging Center

Szűrés-konfokális endo-mikroszkópia

Nyelőcső, gyomor, epeutak, vastagbél, tüdő, húgyhólyag hámszöveteinek autofluoreszcencián alapuló száloptikás mikroszkópos vizsgálata

Emberi vastagbél kelyhek in vivo, valósidejű mikroszkópos képe

Nanobiotechnológiai és In Vivo Képalkotó Központ

Diagnosztika-USPIO MRI

Harishingani M et al N.Engl. J:Med. 2003 Nanobiotechnology and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ Planáris fluoreszcencia

Fluoreszcens sentinel nyirokcsomó keresés melanomában a bal testfélen

Nanobiotechnológiai és In Vivo Képalkotó Központ

Planáris autofluoreszcencia-endoszkópia

C: Barrett-oesophagus endoszkópia, D: autofluoreszcencia (lila) E: nagyfelbontású endoszkópia-irreguláris mintázat. A biopszia adenocc.-t igazolt.

OCT (optical coherence tomography)

- Retina:
- Mucosák
- Porc
- Agyi vérkeringés
- Pár mm-es áthatolóképesség
- Mikronos felbontás
- Valós idejű képalkotás

PET/MRI

PET/CT PET/CT PET/MR PET/MR PET/MR Meningioma PET/MR PET/MR PET/MR Meningioma PET/MR PET/MR PET/MR PET/MR Meningioma PET/MR PET/MR PET/MR PET/MR Meningioma PET/MR PET/MR PET/MR Meningioma PET/MR PET/MR Meningioma

Nanobiotechnológiai és In Vivo Képalkotó Központ

PET/MRI

Nanobiotechnology and In Vivo Imaging Center

Nanobiotechnológiai és In Vivo Képalkotó Központ

SPECT/CT a terápiás döntésekben-neuroendokrin tumor receptor státusz és anyagcsere

Nanobiotechnológiai és In Vivo Képalkotó Központ PET/SPECT/CT – Funkcionális és morfológiai információ együtt

Nanobiotechnológiai és In Vivo Képalkotó Központ Funkcionális és morfológiai információ korrelációja

Nanobiotechnology and In Vivo Imaging Center

